

Geochemical zones and environmental gradients for soils from the Central Transantarctic Mountains, Antarctica

Melisa A. Diaz^{1,2*}, Christopher B. Gardner^{1,2}, Susan A. Welch^{1,2}, W. Andrew Jackson³, Byron J.
 Adams⁴, Diana H. Wall⁵, Ian D. Hogg^{6,7}, Noah Fierer⁸, W. Berry Lyons^{1,2}

4 Adams', Diana H. Walf', Ian D. Hogg", Noan Fierer", W. Berry Lyon

⁵ ¹School of Earth Sciences, The Ohio State University, Columbus, OH, USA

- ⁶ ²Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
- ⁷ ³Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, TX, USA
- 8 ⁴Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University,
- 9 Provo, UT, USA
- ⁵Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO,
 USA
- 12 ⁶Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada
- 13 ⁷School of Science, University of Waikato, Hamilton, New Zealand
- 14 ⁸Department of Ecology and Evolutionary Biology and Cooperative Institute for Research in Environmental Science,
- 15 University of Colorado Boulder, Boulder, CO, USA
- 16

18

17 Correspondence to: Melisa A. Diaz (diaz.237@osu.edu)

19 Abstract. Previous studies have established links between biodiversity and soil geochemistry in the McMurdo Dry Valleys, 20 Antarctica, where environmental gradients are important determinants of soil biodiversity. However, these gradients are not 21 well established in the Central Transantarctic Mountains, which are thought to represent some of the least hospitable 22 Antarctic soils. We analyzed 220 samples from 11 ice-free areas along the Shackleton Glacier (~85 °S), a major outlet 23 glacier of the East Antarctic Ice Sheet. We established three zones of distinct geochemical gradients near the head of the 24 glacier (upper), central (middle), and at the mouth (lower). The upper zone had the highest water-soluble salt concentrations with total salt concentrations exceeding 80,000 µg g⁻¹, while the lower zone had the lowest water-soluble N:P ratios, 25 26 suggesting that, in addition to other parameters (such as proximity to water/ice), the lower zone likely represents the most 27 favorable ecological habitats. Given the strong dependence of geochemistry with geographic parameters, we established 28 multiple linear regression and random forest models to predict soil geochemical trends given latitude, longitude, elevation, 29 distance from the coast, distance from the glacier, and soil moisture (variables which can be inferred from remote 30 measurements). Confidence in our model predictions was moderately high, with R² values for total water-soluble salts, 31 water-soluble N:P, ClO₄, and ClO₃ of 0.51, 0.42, 0.40, and 0.28, respectively. These modeling results can be used to predict 32 geochemical gradients and estimate salt concentrations for other Transantarctic Mountain soils, information that can

33 ultimately be used to better predict distributions of soil biota in this remote region.

34 1. Introduction

From an ecological standpoint, the least biologically diverse terrestrial systems are those found in extreme physical and chemical environments. The abundance and diversity of life in soils is dependent on a number of environmental parameters, including temperature, precipitation, organic matter content, and nutrient availability (Wall et al., 2012). Hot deserts are typically viewed as one of the least biologically diverse environments. However, cold deserts can often be even less diverse (Freckman and Virginia, 1998). Soils in Antarctica typically serve as end-members for low habitat suitability due to their high salt concentrations, low organic carbon, low soil moisture, and low mean annual temperatures (Courtright et al., 2001).

42 In the McMurdo Dry Valleys (MDV), organic matter and salt concentrations influence soil communities, where 43 soils with higher amounts of organic carbon, lower water-soluble N:P ratios, and lower total water-soluble salt 44 concentrations generally harbor the greatest biomass and biodiversity (Barrett et al., 2006; Bottos et al., 2020; Caruso et al., 45 2019; Magalhães et al., 2012). These Antarctic ecosystems are relatively simple and are the only known soil systems where 46 nematodes and microarthropods (Collembola, Acari) are at the top of the food chain (Freckman and Virginia, 1998; Hogg 47 and Wall, 2012). Studies of soils in the MDV and Transantarctic Mountains (TAM) have been key to understanding 48 ecosystem structure and function in extreme terrestrial environments (e.g. Caruso et al., 2019; Collins et al., 2019; Freckman 49 and Virginia, 1998).

50 Biological processes in Antarctic soils are largely dependent on the availability, duration, and proximity of soils to 51 liquid water (Barrett et al., 2006). Due to the seasonality in freezing and thawing events, liquid water acts as a pulse to the 52 ecosystem, providing water for organisms, but also wetting surface soils and dissolving soluble salts (Webster-Brown et al., 53 2010; Zeglin et al., 2009). Experiments of salt thresholds on Antarctic nematodes found that no individuals survived in 54 highly saline soils (\sim 2,600 mg L⁻¹TDS) (Nkem et al., 2006). Concentrations of soluble salts exist at these concentrations or 55 higher for high elevation and inland locations in the TAM (Bockheim, 2008; Lyons et al., 2016). Additionally, studies on 56 TAM soils have found that increased salt concentrations lead to a decrease in soil biodiversity in older soils compared to 57 younger soils (Magalhães et al., 2012). Yet, despite these inhospitable conditions (e.g. high salt concentrations and glacial 58 advance and retreat), some organisms are postulated to have found suitable refugia in TAM soils and persisted in isolation 59 for millions of years and through glacial cycles (Beet et al., 2016; Stevens et al., 2006; Stevens and Hogg, 2003).

It is generally accepted that habitat suitability for invertebrate species in Antarctic soils is driven by a combination of geochemical, geographic, and geomorphic variables (Bottos et al., 2020; Courtright et al., 2001; Freekman and Virginia, 1998; Magalhães et al., 2012). Geographic variables, such as elevation, can be measured with advanced mapping tools and satellite imagery; however, surface exposure ages, soil geochemistry and nutrient content require extensive logistical support and resource allocation for sample collection and analysis. More efficient estimation tools are needed to aid in our ability to understand and predict habitat suitability for invertebrates throughout the TAM.

66 With this study, we determined and evaluated geochemical patterns and gradients of water-soluble ions in soils 67 collected from 11 ice-free areas along the Shackleton Glacier, Central Transantarctic Mountains (CTAM). Particular 68 attention was given to total water-soluble salt concentrations, N:P ratios, and ClO₄⁻ and ClO₃⁻ concentrations, based on their 69 influence on biodiversity, as determined in previous studies (e.g. Ball et al., 2018; Barrett et al., 2006b; Courtright et al., 70 2001; Dragone et al., 2020; Nkem et al., 2006). The geochemical data were compared to geographic parameters to 71 understand how the physical environment influences the observed geochemical variability. Our results show that water-72 soluble ion concentrations and distributions are driven largely by soil geography and surface exposure age. Finally, we 73 implemented statistical and machine learning techniques to interpolate and predict the soil geochemistry across the region 74 using geographic variables. Our multiple linear regression and random forest models show that latitude, longitude, elevation, 75 distance from the coast, distance from the glacier, and soil moisture (all variables currently or soon to be remotely 76 measurable using maps and satellites) are moderately effective at estimating spatial patterns in TAM soil geochemistry, with 77 R^2 values as high as 0.87. These data will be particularly useful for ecologists seeking to understand refugia and habitat 78 suitability in Antarctica and similarly harsh, desert environments.

79 **2.** Study sites

The Shackleton Glacier (~84.5 to 86.4°S; ~130 km long and ~10 km wide) is a S-N trending outlet glacier of the East Antarctic Ice Sheet (EAIS) located to the west of the Beardmore Glacier and flows through the Queen Maud Mountains (CTAM) into the Ross Sea (Fig. 1). The elevations of exposed soils range from ~150 m.a.s.l. to >3,500 m.a.s.l. from the coast towards the Polar Plateau. Long-term climate data are not yet available, but the Shackleton Glacier region is a polar desert regime, similar to the Beardmore Glacier region, with average annual temperatures well below freezing and little precipitation (LaPrade, 1984).

86 During the Last Glacial Maximum (LGM) and glacial periods throughout the Pleistocene, the size and thickness of 87 the EAIS has been suggested to be greater than current levels (Golledge et al., 2013; Nakada and Lambeck, 1988; Talarico et 88 al., 2012; Wilson et al., 2018). Outlet glaciers, such as the Shackleton Glacier, may have had the greatest increases in extent, 89 especially towards the glacier terminus (Golledge et al., 2012; Golledge and Levy, 2011). The behavior of local alpine and 90 tributary glaciers is not well-constrained, but these glaciers are also believed to have advanced and retreated over the last two 91 million years (Diaz et al., 2020a; Jackson et al., 2018). As a result, currently exposed soils were overlain and reworked by 92 fluctuations of the Shackleton Glacier and other tributary and alpine glaciers in the region. Exposure ages range from the 93 early Holocene to the Miocene, and generally increase with distance from the coast and distance from the glacier (Balter et 94 al., 2020; Diaz et al., 2020a).

95 The soils contain a range of water-soluble salts derived primarily from atmospheric deposition and chemical 96 weathering (Claridge and Campbell, 1968; Diaz et al., 2020b). The major salts are typically nitrate and sulfate salts, 97 especially at higher elevations and further inland from the coast of the Ross Sea (Diaz et al., 2020b). The solubilities of the

salts vary, but nitrate salts are highly soluble and their occurrence at high elevation and inland locations suggests that those
 soils have maintained persistent arid conditions.

100 **3. Methods**

101 3.1. Sample collection and preparation

102 During the 2017-2018 austral summer, 220 surface soil samples (~top 5 cm) were collected from 11 distinct ice-free 103 areas (Roberts Massif, Schroeder Hill, Mt. Augustana, Bennett Platform, Mt. Heekin, Thanksgiving Valley, Taylor Nunatak, 104 Mt. Franke, Mt. Wasko, Nilsen Peak, and Mt. Speed) along the Shackleton Glacier, including a subset of 27 samples 105 previously analyzed for S, N, and O isotopes in nitrate and sulfate (Diaz et al., 2020b). At each area, we collected samples in 106 transects (ranging from ~200 m to ~2,000 m in length) to maximize the geochemical variability. Our transects were also 107 designed to capture the LGM transition, with some soils exposed throughout the LGM and others exposed following glacier 108 retreat. GPS coordinates and elevations were recorded with each sample and later used to estimate the distance from coast 109 and distance from the glacier (defined as linear distance from the nearest glacier - Shackleton, tributary, or alpine). Once 110 collected, the samples were stored and shipped frozen (-20 °C) to The Ohio State University.

Prior to geochemical analysis, the samples were dried at 50 °C for at least 72 hours with the loss in mass attributed to soil moisture content. The dried soils were leached at a 1:5 soil to DI water ratio, and the leachate was filtered through 0.4 µm Nucleopore membrane filters (Diaz et al., 2018, 2020b; Nkem et al., 2006). Due to the low sediment to water ratio, this leaching technique only dissolves the more water-soluble salts (Toner et al., 2013). These include salts with ClO_4^- , NO_3^- , Cl^- , SO_4^{2-} , ClO_3^- , and CO_3^{2-} + HCO_3^- . Process blanks were generated and analyzed to account for any contamination from the leaching process.

117 3.2. Analytical analysis of water-soluble anions, cations, and nutrients

118 The analytical techniques used here are similar to those reported by Diaz et al. (2020b). In brief, the analytes 119 included anions (F⁻, Cl⁻, Br⁻, and SO_4^{2-}) which were measured on a Dionex ICS-2100 ion chromatograph, cations (K⁺, Na⁺, 120 Ca²⁺, Mg²⁺, and Sr²⁺) which were measured on a PerkinElmer Optima 8300 Inductively Coupled Plasma-Optical Emission 121 Spectrometer (ICP-OES), and nutrients ($NO_3^- + NO_2^-$, PO_4^{3-} , H_4SiO_4 , and NH_3) which were measured on a Skalar San+++ 122 Automated Wet Chemistry Analyzer at The Ohio State University. Perchlorate (ClO₄⁻) and chlorate (ClO₃⁻) were measured 123 using an ion chromatograph-tandem mass spectrometry technique (IC-MS/MS) at Texas Tech University (Jackson et al., 124 2012, 2015). All analytes are reported as listed. Total water-soluble salt concentration was calculated as the sum of all 125 measured cations and anions. The precision of replicated check standards and samples was typically better than 10% for all 126 major anions, cations and nutrients, and better than 20% for perchlorate and chlorate. Accuracy was typically better than 5% 127 for all major anions, cations, and nutrients, as determined by the NIST 1643e external reference standard and the 2015 USGS 128 interlaboratory calibration standard (M-216), and better than 10% for perchlorate and chlorate, as determined by spike

- recoveries. Precision and accuracy for individual analytes are located in Table S1. Detection limits for the analytes have been
 previous reported (Diaz et al., 2018; Jackson et al., 2012).
- 131 3.3. Data interpolation and machine learning

Inverse distance weighted (IDW) interpolations were performed for Bennett Platform, Thanksgiving Valley, and Roberts Massif using the Geostatistical Analyst tool in ArcMap 10.3. Since IDW is a deterministic method where unknown values are predicted based on proximity to known values, we chose those three sites as they had the most defined transects and relatively higher sample density. The interpolation parameters were constant with a power of 4, maximum neighbors of 15, minimum neighbors of 5, and 4 sectors, and a variable search radius. These parameters were chosen such that they optimize for the lowest mean absolute error.

138 Multiple linear regressions were generated for all geochemical analytes, except H₄SiO₄ (total of 15 dependent 139 variables), with latitude, longitude, elevation, distance from the coast, distance from the glacier, and soil moisture as 140 independent variables using built-in functions in R 3.6.3 (R Core Team, 2020). Random forest regression models were 141 similarly generated using the randomForest library. The random forest model is a machine learning algorithm that utilizes 142 supervised learning algorithms to predict values given input predictor variables (Breiman, 2001). Multiple decision trees are 143 run in parallel with a randomized subset of predictor variables, and the aggregate result of each tree is used to generate a 144 predicted outcome. Since each tree is generated using a random sample and random predictor variables, the random forest 145 model is effective at minimizing overfitting and handling outliers (Breiman, 2001).

Machine learning algorithms are widely used in variety of disciplines from finance (Patel et al., 2015) to ecology
(Davidson et al., 2009; Peters et al., 2007; Prasad et al., 2006), for both data prediction (regression) and classification.
Recently, these techniques have been used for Earth Science applications, including geologic mapping (Heung et al., 2014;
Kirkwood et al., 2016), air quality monitoring (Stafoggia et al., 2019), and water contaminant tracing (Tesoriero et al., 2017).
We developed a novel application of machine learning to predict concentrations and gradients of water-soluble salts in
Antarctic soils, given set geographic parameters, similar to the approaches developed for stock market and real estate
predictions (Antipov and Pokryshevskaya, 2012; Patel et al., 2015).

For our random forest models, any sparse missing values in Table S2 were estimated by averaging the geochemistry of the samples collected immediately before and after in the same transect. Missing values due to concentrations below the detection limit were input as 0. The new imputed dataset was split into a training set representing 86% of the data (n = 189, Table S3) and a testing set representing the remaining 14% (n = 31, Table S4). The training dataset was used to generate the random forest models for each analyte. Each of the models were run with 2000 decision trees (ntree = 2000) to minimize the mean square errors. The number of random variables used for each node split in the decision trees was set to the recommended regression default of variables/3 to optimize the model randomness, which in our case was 2 (mtry = 2),

following parameters described previously (Breiman, 2001). The scripts developed for both the multiple linear regressionand random forest models are included in the supplementary materials.

162 **4. Results**

- 163 4.1. Geochemistry of upper, middle, and lower zones
- 164 The maximum, minimum, mean, standard deviation and coefficient of variation are reported in Table 1 for the 165 measured geographic and geochemical data. Concentrations of water-soluble ions span up to five orders of magnitude and 166 are variable across the region. Elevation, distance from the coast, distance from the glacier, and soil moisture are also 167 variable and span up to three orders of magnitude. The highest elevation samples (> 2,000 m.a.s.l.) were collected from 168 Schroeder Hill and the greatest soil moisture content is from Mt. Wasko at 12.3%, with a mean of 2.1% for all samples.
- 169 Shackleton Glacier region surface soils can be separated into three zones based on their water-soluble geochemistry: 170 an upper zone near the Polar Plateau, a middle zone near the center of the glacier, and a lower zone where the glacier flows 171 into the Ross Sea (Figs. 1; 2). The upper zone samples are characterized by the highest total water-soluble salt 172 concentrations, with the highest values greater than 80,000 µg g⁻¹ at Schroeder Hill, while the lower zone samples have the 173 lowest total salt concentrations, with the lowest values near 10 µg g⁻¹ at Mt. Wasko (Fig. 2a-c). The middle zone has 174 intermediate values. Water-soluble N:P molar ratios generally follow a similar trend (Fig. 2d-f). The lowest N:P ratios are in 175 the lower zone soils, while the middle and upper zones have more variable values. Concentrations of ClO_4^- and ClO_3^- follow 176 similar trends as the total salts, with less distinction between middle and upper zones, though most concentrations in the 177 lower zone are below the detection limit (Fig. 2g-l; Table S2).
- 178 Observed trends between the zones appear to be driven, at least partially, by geography. Regressions of total water-179 soluble salt concentration, water-soluble N:P ratio, and ClO₃⁻ concentration with elevation, distance from the coast, and 180 distance from the glacier are all positive (Fig. 2). The strongest relationships are between total salts and elevation, and ClO₃⁻ 181 and distance from the coast, with R^2 values of 0.26 and 0.24, respectively, and p-values < 0.001 (Fig. 2a;2k). The weakest 182 relationships are between ClO_4^- and distance from the coast and distance from the glacier, with R² values of 0.01 (Fig. 2h; 183 2i). Distance from the glacier varies widely between individual zones with frequent overlaps, but there appears to be a 184 moderate relationship with N:P ratio and total salts (Fig. 2c; 2f). Overall, total salt concentration has the strongest 185 relationship with geography and ClO₄⁻ has the weakest relationships.
- 186Ternary diagrams highlight the specific geochemical gradients within and between the zones. The anion ternary187diagram only includes SO_4^{2-} , NO_3^{-} , and Cl^- , which are the major water-soluble salts in the region (Claridge and Campbell,1881968; Diaz et al., 2020b). Though carbonate and bicarbonate salts have been identified in both lacustrine sediments and soils189in Antarctica, previously measured concentrations in the Shackleton Glacier region were low, ranging from 0.07 to 2.5%,190and bicarbonate salts were not identified in the highest elevation and furthest inland soils (Claridge and Campbell, 1968;191Diaz et al., 2020b; Lyons et al., 2016). The most abundant anion for the upper zone is SO_4^{2-} , which is greater than 99% of the

total anion budget in some Schroeder Hill and Roberts Massif samples, though other locations are dominated by NO₃⁻ (Fig. 3). The anions are more evenly distributed in the middle zone, though the majority of samples are most abundant in NO₃⁻ and Cl⁻. The lower zone has much lower SO₄²⁻ fractions than the upper zone and the dominant anion is generally Cl⁻. The cation distribution is very similar for all three zones (Fig. 3). Na⁺ + K⁺ is the most abundant cation pair representing over 90% of the total cations for many upper and middle zone samples, while Ca²⁺ is the second most abundant. In general, Mg²⁺ is the least abundant cation across all sampling locations.

198 4.2. Statistical geochemical variability

199 A principal component analysis (PCA) was performed in R (using factoextra (Kassambara and Mundt, 2017) and 200 built in software libraries) to determine which geochemical variables most strongly differ across the samples. For the PCA, 201 the first two principal components account for over 50% of the total dataset variability at 44.2% and 11.6%, respectively. 202 The different zones are correlated with different principal components (Fig. 4). The samples from the middle zone are 203 positively correlated with PC1 and PC2. In the biplot, they plot in the upper right quadrant with high concentrations of Cl⁻, 204 NO_3^- , water soluble N:P ratio, and Ca^{2+} , with a minor influence from soil moisture and H₄SiO₄. The upper zone samples 205 generally plot along PC1 and are most associated with Sr²⁺, SO₄²⁻, Mg²⁺, Na⁺, K⁺, F⁻, ClO₄⁻, and ClO₃⁻. The samples from the 206 lower, more coastal zone are negatively correlated with PC1 and are distinguished by their higher PO₄³⁻ concentrations. Most 207 samples from all locations plot within the 95% confidence interval ellipses. However, there are two strong outliers from 208 Schroeder Hill and Mt. Heekin.

209 Similar to the PCA, we performed a simple Spearman's rank correlation for the entire dataset to visualize the 210 statistical dependence between all variables. Since a goal of this study is to relate water-soluble ion concentrations to 211 geography, we focused on latitude, longitude, distance from the coast, distance from the glacier, and soil moisture. The 212 strongest correlation coefficients are between Cl⁻ and latitude, elevation, and distance from the coast, and Sr^{2+} and soil 213 moisture (Fig. 5). Most other correlations are moderate to weak, though there appear to be notably stronger correlations 214 between ClO_3^- and latitude and distance from coast, Ca^{2+} and longitude, elevation, and distance from coast, NO_3^- and 215 latitude, and SO_4^{2-} with distance from glacier. Longitude, elevation, and distance from coast have the greatest number of 216 strong and moderate correlations with the geochemistry data. Outside of the geographic parameters, Na⁺ is highly correlated 217 with total water-soluble salts, likely representative of the high Na⁺ + K⁺ percentages (Fig. 3), and Sr²⁺ is highly correlated 218 with K⁺, likely reflecting a common ion source.

219 4.3. Spatial interpolation and machine learning model performance

The total salt concentrations of individual samples at Bennett Platform produce the most defined interpolation gradient from the glacier front to further inland compared to Roberts Massif and Thanksgiving Valley (Fig. 6). Bennett Platform also has the smoothest salt concentration contours suggesting that the interpolation model is the strongest and most robust at this location. The second strongest interpolation is Thanksgiving Valley. Contrary to the measurements at Bennett

Platform, Thanksgiving Valley has the highest salt concentrations in the center of the valley, with lower concentrations to both the east and west. The lowest concentration contours are closest to the glacier for both Bennett Platform and Thanksgiving Valley, which is likely related to glacial history since the soils near the glacier are relatively younger than those further inland based on meteoric ¹⁰Be data (Diaz et al., 2020a). The interpolation from Roberts Massif does not have a distinguishable spatial trend.

229 The multiple linear regression and random forest models vary in their strength for the individual analytes. The 230 highest R² value from the linear regression is 0.55 for Sr²⁺, while total water-soluble salts, water-soluble N:P ratio, ClO₄⁻, 231 and ClO_3^- have values of 0.37, 0.37, 0.10, and 0.33, respectively (Table 2). The lowest R² value is for Cl⁻ at 0.05. The p-232 values for nearly all analytes are <<0.001, with Cl⁻ having the only value above 0.05. The highest out-of-the-bag explained 233 variance values from the random forest models are for K^+ and Sr^{2+} at 62% for both analytes. Values for NO_3^- , PO_4^{3-} , ClO_4^- , 234 and N:P ratio are negative. The explained variance for total salts is 45% and the variance for ClO₃⁻ is 43%. We also 235 evaluated the most important and least important variables in the random forest models based on node purity. The most 236 important variable for the majority of analytes is elevation, while distance from the glacier is most important for N:P ratio 237 and latitude for ClO_3^- (Table 2). The least important variable is distance from the coast for every analyte, except ClO_3^- and 238 NH₃, for which distance from the glacier is least important.

239 **5.** Discussion

240 5.1. Implications for ecological habitat suitability

By establishing geochemical zones for the Shackleton Glacier region, we can better understand the relationship between geochemistry and geography, and ultimately biogeography. As stated in the introduction, we focused particularly on total water-soluble salt concentrations, water-soluble N:P ratios, and ClO₄⁻ and ClO₃⁻ concentrations.

244 5.1.1. Elevation and moisture controls on total water-soluble salt gradients

245 The elevational trends of total salt concentrations at the Shackleton Glacier are similar to those previously described 246 in the TAM, where soils from higher elevation sites typically have higher salt concentrations (Bottos et al., 2020; Lyons et 247 al., 2016; Magalhães et al., 2012). Our results are also consistent with those from Scarrow et al. (2014), who found that salt 248 concentrations typically decreased with distance from the glacier. Our total water-soluble salt interpolation maps highlight 249 the spatial variability in Shackleton Glacier region soils (Fig. 6). The most spatially variable location is Robert Massif, which 250 does not appear to follow local elevational, latitudinal, and/or distance inland gradients. This heterogeneity is not necessarily 251 due to currently active soil leaching, as the soil moisture values are not drastically different between the samples (Table S2). 252 Though the variability in cation concentrations is likely due to weathering of tills, scree, and bedrock (Claridge and 253 Campbell, 1968), recent work on the isotopic composition of water-soluble nitrate and sulfate, the major anions in the upper 254 zone, suggests a common, atmospheric source (Diaz et al., 2020b).

255 We argue that the heterogeneity in the total salt concentrations at Roberts Massif (Figs. 2; 6) is probably related to 256 different and complex wetting history, where seasonal snow patch melt may pool in local depressions, transporting water-257 soluble salts from slightly higher elevations and/or from saline wet-patches (Levy et al., 2012). This is demonstrated on a 258 larger scale at Thanksgiving Valley, a glacially carved valley, where the higher concentrations of salts in the center of the 259 valley are likely due to the transport of salts from nearby higher elevation slopes during melting events. This is further 260 evidenced by the presence of two small, closed-basin ponds in the center of the valley, which likely formed from glacial melt 261 and may have been larger in size in the recent past (Diaz et al., 2019). Similarly, streams and meltwater tracks in the MDV 262 leach soils and carry salts into closed basin, brackish to hyper-saline lakes, where salts are cryoconcentrated over time 263 (Lyons et al., 1998). Our results suggest that elevation and wetting history are important contributors to total salt gradients in 264 the Shackleton Glacier region, as they influence the accumulation of salts and subsequent leaching from soils.

265 5.1.2. Influence of glacial history on water-soluble N:P ratios

266 Stoichiometric dependencies have been identified for Antarctic terrestrial organisms, where nutrient concentrations, 267 in addition to soil aridity, limit ecosystem development (Nkem et al., 2006). Since nitrate is primarily derived from 268 atmospheric deposition and phosphorus is primarily liberated from minerals by chemical weathering in the CTAM, many 269 inland and higher elevation soils have accumulated high concentrations of NO3⁻, resulting in stoichiometric imbalance with 270 soluble PO4³⁻ (Ball et al., 2018; Barrett et al., 2007; Diaz et al., 2020b; Lyons et al., 2016; Nkem et al., 2006). As in the 271 MDV, younger and coastal soils at lower elevations in the Shackleton Glacier region have the lowest water-soluble N:P 272 ratios, driven by relatively low concentrations of NO3⁻ and high concentrations of PO4³⁻ due to an increase in moisture 273 content and chemical weathering (Heindel et al., 2017) (Fig. 2; 4). It is not surprising that life was conspicuous in these soils, 274 with thick lichen growth on several rocks and the presence of both Collembola and mites at Mt. Speed and Mt. Wasko (Fig. 275 S1). However, despite overall elevational and latitudinal gradients, some inland locations in the middle and upper zones have 276 water-soluble N:P ratios near those from the lower zone (Fig. 2).

277 The interpolation model from Bennett Platform shows that some locations near the glacier have lower total water-278 soluble salt concentrations (Fig. 6), similar to soils surveyed in the MDV (Bockheim, 2002). However, the samples near the 279 glacier at Bennett Platform not only have lower total salt concentrations, they also have lower N:P ratios than samples 280 collected further inland. This is also the case for the middle zone locations (Fig. 2f). We argue this is due to differences in 281 glacial history between the locations. Our previous work showed that soils near the glacier are younger than soils further 282 inland in the Shackleton Glacier region (Diaz et al., 2020a). These soils are shielded from nitrate accumulation during glacial 283 periods, and the recently exposed rocks likely serve as fresh mineral weathering material for PO_4^{3-} mobilization (Heindel et 284 al., 2017). Recently exposed and relatively nutrient rich soils might be important refugia for invertebrates. Previous 285 hypotheses have suggested that organisms may have persisted at higher elevations during glacial periods (Bennett et al., 286 2016; Stevens and Hogg, 2003). However, abiotic gradients in the Beardmore Glacier region suggest that higher elevation 287 soils have salt concentrations that would classify them as unsuitable habitats (Lyons et al., 2016). If few organisms survived

glaciations, the near-glacier, relatively P-rich soils may be important in helping communities recover and restructure postglaciation.

290 5.1.3. High and variable ClO_4^- and ClO_3^- concentrations

291 Our ClO_4^- and ClO_3^- concentrations include the highest measured in Antarctica to date and are comparable to 292 concentrations from the Atacama and Mojave Deserts (Jackson et al., 2015). Though not a strong correlation, the highest 293 elevation samples (upper zone) have the highest ClO_4^- and ClO_3^- concentrations (Fig. 2g; 2i). Similar to NO_3^- , ClO_4^- and 294 ClO₃⁻ are derived from atmospheric deposition and because of their solubilities, their accumulations are related to wetting 295 and glacial histories (Jackson et al., 2016, 2015). Therefore, soils which have been exposed for long periods of time and have 296 not experienced snow or ice melt, such as those from Schroeder Hill and Roberts Massif, are able to accumulate high 297 concentrations of ClO₄⁻ and ClO₃⁻. Interestingly, our ClO₄⁻ concentrations are lower (maximum of ~ 1.9 g L⁻¹) than the 298 highest recorded tolerance (1.1M (~130 g L⁻¹) NaClO₄) for the extremotolerant bacteria *Planococcus halocryophilus*, yet a 299 recent study shows no detectable biomass for Schroeder Hill samples (Dragone et al., 2020). (Per)chlorates are strong 300 oxidizers and are well established as toxic, thus the concentrations of ClO_4^- and ClO_3^- might be additional, crucial indicators 301 of habitat suitability. However, the concentrations are highly heterogenous across our sampled locations (Fig. 2k-l), and 302 unlike ClO_3^{-} , neither the multiple linear regression nor random forest models were able to adequately capture the variability 303 in ClO₄⁻ concentrations (Table 2).

304 5.2. Machine learning as a tool to predict soil geochemical trends

305 We sought to evaluate our multiple linear regression and random forest models using a testing dataset from the 306 Shackleton Glacier region (n = 31) and a second dataset from the Darwin Mountains ($\sim 80^{\circ}$ S) (n = 10) (Magalhães et al., 307 2012). Few published/available TAM dataset include sample GPS coordinates, soil moisture, and water-soluble ion 308 geochemistry. As stated in Section 3.3, the Shackleton Glacier region test data were not included in the random forest model 309 generation so we could evaluate our models with an independent dataset. For the Darwin dataset, distance from the glacier, 310 distance from the coast, and elevation were determined using the Reference Elevation Model of Antarctica (REMA), while 311 location, soil moisture and geochemistry were retrieved from the literature (Howat et al., 2019; Magalhães et al., 2012). We 312 evaluated all 15 analytes from the original models with the Shackleton dataset and due to a lack of data, only evaluated 7 313 analytes from the Darwin soils (Figure 7).

Both the multiple linear regression and random forest model outputs are moderately well-correlated for the Shackleton dataset, as determined by Pearson correlations between the measured and predicted values (Fig. 7a; Table 3). The random forest models outperform the linear regression models for nearly every analyte, with the notable exceptions of F^- , Na⁺, and NO₃⁻, and nearly all p-values are <0.001. Mg²⁺ is the most accurately predicted, with R² values of 0.79 and 0.52 for the random forest and linear regression models, respectively (Fig. 7a). In terms of our analytes of interest regarding habitat suitability, total salts have the strongest correlation in the random forest model (R² = 0.51), followed by water-soluble N:P

ratio ($R^2 = 0.42$), ClO₄⁻ ($R^2 = 0.40$), and ClO₃⁻ ($R^2 = 0.28$). N:P ratio in particular performs significantly better than the linear regression model ($R^2 = 0.05$). Mean absolute error (MAE) and root mean squared error (RMSE) values indicate that the random forest models also have a smaller error compared to the multiple linear regression models (Table 4). MAE values are lower than RMSE values for both models, indicating the strong presence of outliers in the testing dataset. This is unsurprising as the standard deviation and coefficient of variation values for the entire dataset are relatively large for all analytes.

326 Similar to the model performance in the Shackleton Glacier region, the water-soluble ion predictions for the Darwin 327 Glacier region are more strongly correlated with measured values in the random forest models compared to the multiple 328 linear regressions (Fig. 7b). In fact, the linear regression models fail for the Darwin samples and all concentration outputs are 329 negative, which is likely due to overfitting during model generation. MAE and RSME values for both models are much 330 higher than those for the Shackleton dataset (Table 4). On the other hand, the random forest models perform particularly well 331 for some analytes. Though a small sample size, the R^2 values for Mg^{2+} and K^+ are 0.87, with p-values <<0.001. Total salts is 332 moderately correlated ($R^2 = 0.44$) and N:P ratio has an R^2 value of 0.01, indicating poor model performance. It is unclear 333 why Mg^{2+} and K^+ are the most accurately predicted, though we suspect that this is due to weathering trends of local lithology 334 across the TAM, since chemical weathering is probably the major source of these ions.

- 335 It should be noted that the R² values simply measure the strength of the correlations between the measured and 336 predicted values. We performed slope tests by fitting bivariate lines using the standardized major axis (SMA) to further 337 understand the relationship between the two values using the smatr library in R (Warton et al., 2012). For this test, we 338 specifically evaluated the null hypothesis (H_0) where slope = 1, which would indicate whether an ideal, direct 1:1 339 relationship exists between the measured and predicted values. Test statistic values (t) were used to measure the sample 340 correlation between the residuals and fitted values (Warton et al., 2012). Test statistic values near 1 indicate that we reject 341 the null hypothesis. In other words, higher absolute test statistic values indicate a slope other than 1. Of the 15 analytes in the 342 Shackleton dataset, 7 analytes have slopes near 1 for the multiple linear regression models and 6 for the random forest, as 343 indicated by test statistic values less than 0.5. For the Darwin, only one analyte, NO_3^- , has a test statistic value less than 0.5 344 (Fig. 7; Table 3).
- These data indicate that while some analytes have high correlations between measured and predicted values, the models perform best with the Shackleton Glacier region soils. Additionally, though the relationship may not be 1:1, the random forest models are effective at predicting the measured geochemical gradients. For example, similar to our data, the Darwin Glacier samples generally have greater water-soluble N:P ratios and total water-soluble salt concentrations further from the glacier and at higher elevations (Magalhães et al., 2012), a trend that is reflected by our model results despite offset values. Additionally, corrections for the offset of the model from a slope = 1 (i.e. multiplying the model output value by the regression slope) can be made to better estimate specific concentrations, though the difference between modeled and

measured values can still be up to 2x greater. Our sample size for building the multiple linear regression and random forest models is small. We anticipate that, as more data are collected throughout the CTAM, these data can be added to the model training dataset, expanding our prediction capabilities and increasing model reliability.

355 6. Conclusions

356 The soil ecosystems found in the Transantarctic Mountains are among the least diverse on Earth and their structure 357 is influenced by environmental factors. We characterized environmental and geochemical gradients in the Shackleton Glacier 358 region, which aid in our understanding of the abiotic properties in soils governing biodiversity and biogeography. The 220 359 samples we analyzed represent a wide range of soil environments: those with different elevation, latitude, longitude, glacial 360 history, and geochemistry. We determined three soil zones: an upper zone near the head of the glacier which is characterized 361 by high total water-soluble salt concentrations, high water-soluble N:P ratios, and high ClO₄⁻ and ClO₃⁻ concentrations, a 362 lower zone with low total salt concentrations and higher PO_4^{3-} concentrations, and a middle zone with intermediate values. 363 The zones help elucidate the geographic influences on soil geochemistry. In addition, our total water-soluble salt 364 interpolations at Roberts Massif, Bennett Platform, and Thanksgiving Valley reflect the local small-scale variability of salt 365 concentrations and possible influences from soil age and wetting history.

Similar to previous studies, our results suggest that high elevation and inland soils, such as those from the upper zone, were likely unsuitable candidates for refugia during the Last Glacial Maximum. However, glacial advance and retreat and climate shifts may leach soils, lowering otherwise toxic total water-soluble salt concentrations and N:P ratios. These more recently exposed soils may be particularly important in maintaining and reviving contemporary and past biological communities.

371 Five geographic variables (latitude, longitude, elevation, distance from the coast, and distance from the glacier) and 372 soil moisture were correlated with soil geochemistry. We used these variables to develop multiple linear regression and 373 random forest models to predict ion concentrations and geochemical gradients. The model results generally reflected the 374 measured geochemical variability across the region. Test datasets from the Shackleton and Darwin Glacier regions showed 375 that the random forest models typically outperformed the multiple linear regression models when correlating measured and 376 predicted values, especially for the Darwin region. Though most correlations did not exhibit a 1:1 relationship and had 377 varying slopes, the random forest models were able to adequately predict geochemical gradients, as demonstrated by 378 moderate to high R² values between measured and model predicted concentrations. As terrestrial Antarctic geochemical 379 databases expand and are included in the random forest model training dataset, we anticipate the model's predictive 380 capabilities will expand and improve as well. While these results are currently most applicable for Central Transantarctic 381 Mountain soils, similar techniques can be applied to other hyper-arid environments (e.g. Namib and Atacama Deserts, Mars) 382 to inform patterns of biodiversity and biogeography.

383 Author Contributions

The project was designed and funded by BJA, DHW, IDH, NF, and WBL. Fieldwork was conducted by BJA, DHW, IDH, NF, and MAD. CBG, SAW, and MAD prepared and analyzed the samples for water-soluble ion and nutrient analyses. WAJ prepared and analyzed the samples for ClO₄⁻ and ClO₃⁻. MAD generated the scripts and performed the analyses for the IDW interpolations, multiple linear regression, and random forest models. MAD wrote the article with contributions and edits from all authors.

389 Data Availability Statement

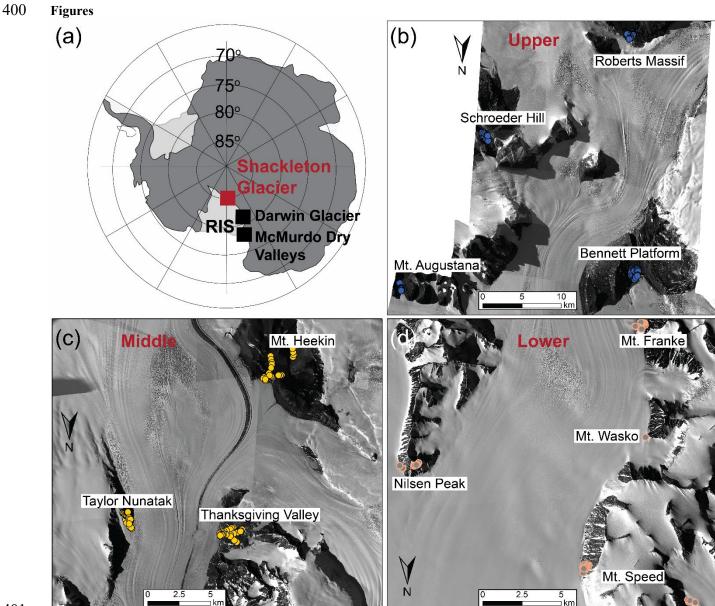
390 The datasets generated for this study are included in the article or supplementary materials.

391 Competing Interests

392 The authors declare that they have no conflict of interest.

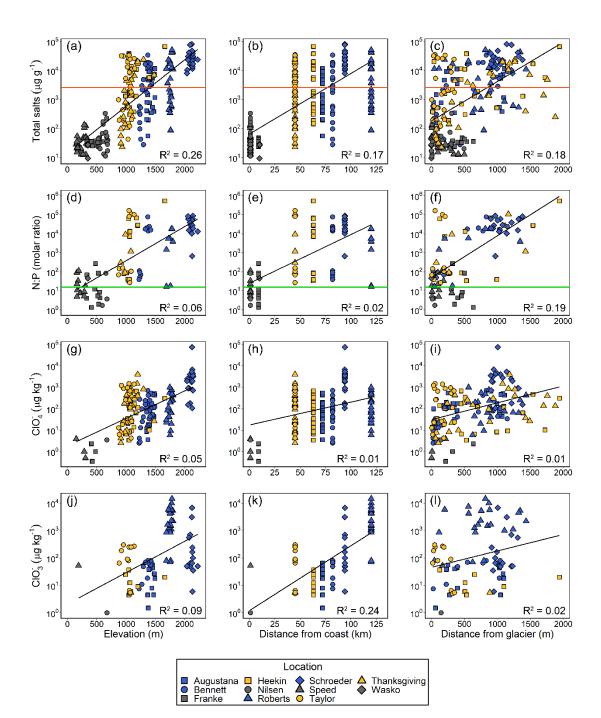
393 Acknowledgments

- We thank the United States Antarctic Program (USAP), Antarctic Science Contractors (ASC), Petroleum Helicopters Inc.
- 395 (PHI), and Marci Shaver-Adams for logistical and field support. Additionally, we thank Daniel Gilbert for help with initial
- 396 laboratory analyses at The Ohio State University. This work was supported by NSF OPP grants 1341631 (WBL), 1341618
- 397 (DHW), 1341629 (NF), 1341736 (BJA), and NSF GRFP fellowship 60041697 (MAD). Geospatial support for this work
- 398 provided by the Polar Geospatial Center under NSF OPP grants 1043681 and 1559691.
- 399



401

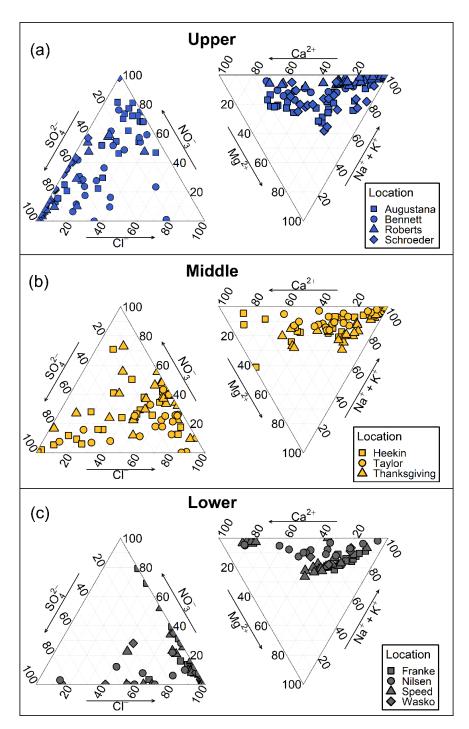
Figure 1. Samples were collected and analyzed from the exposed soils along the Shackleton Glacier, a major outlet glacier of the EAIS (a), in three zones. The upper zone (b) was located at the head of Shackleton Glacier, the middle zone (c) was the central portion, and the lower zone (d) was at the mouth of the glacier where it drains into the Ross Sea. Satellite images were provided courtesy of the Polar Geospatial Center (PGC).



407

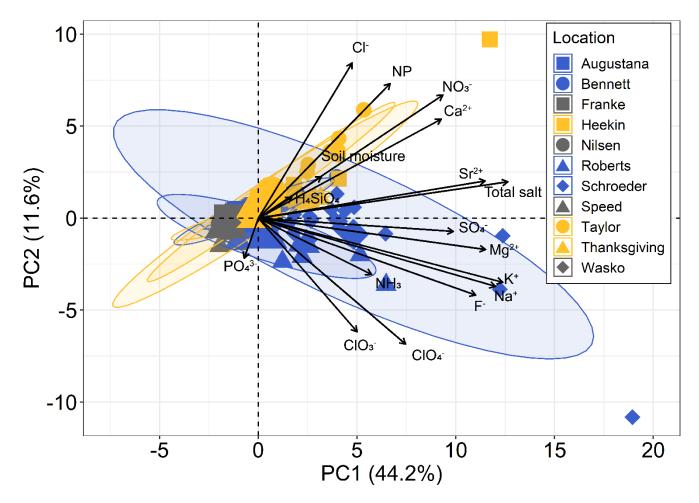
Figure 2. Total water-soluble salts, water-soluble N:P molar ratio, and ClO_4^- and ClO_3^- concentrations (log scale) were compared to elevation, distance from the coast, and distance from the glacier for samples from the three geographic zones. Linear regression lines are plotted and R² values are reported for each relationship. The horizontal orange line represents nematode salt tolerance of ~2,600 (Nkem et al., 2006) and the green line represents the Redfield ratio, N:P = 16 for

412 phytoplankton in the ocean.



414

415 Figure 3. Anion and cation ternary diagrams for the three geographic zones.

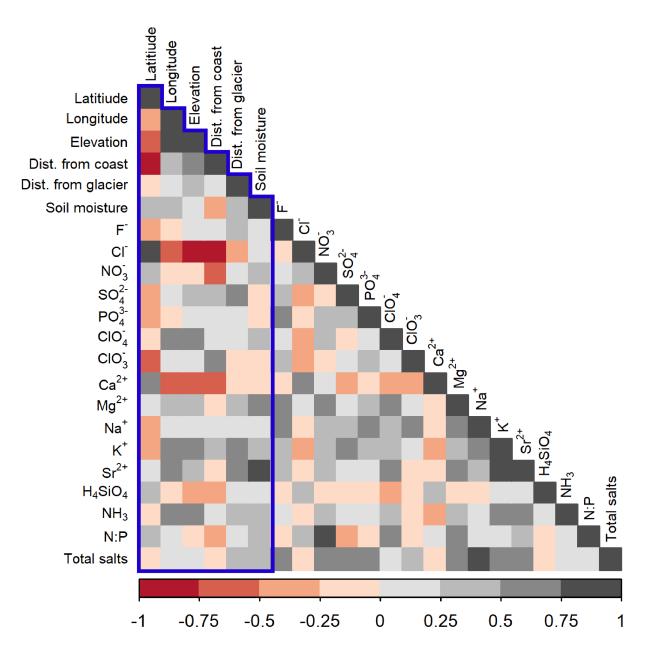


417

418 Figure 4. Principal component analysis (PCA) biplot generated in R using factoextra and built in software libraries with all 419 anions, cations, nutrients, and soil moisture for the three geographic zones. Principal component 1 and principal component 2

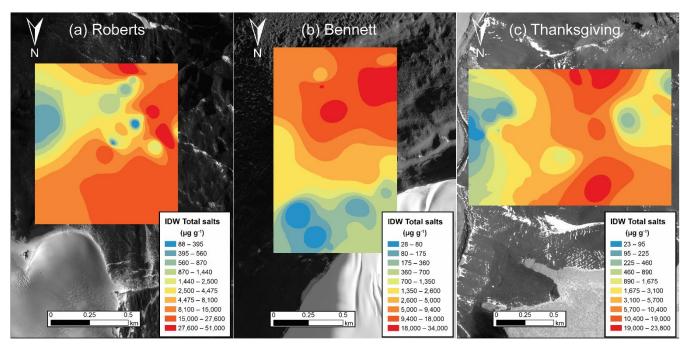
420 are plotted on the x and y axes, respectively. Shaded ellipses represent 95% confidence intervals.

422

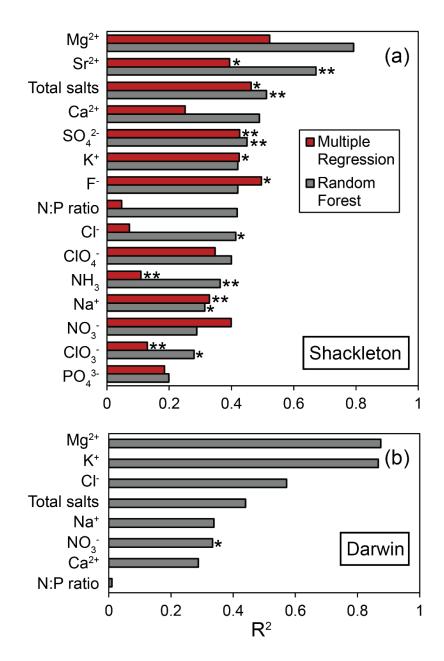


423

Figure 5. Spearman's rank correlation matrix generated in R using the corrplot library. The colors represent correlation coefficients, indicating the strength and magnitude of the correlation. The blue box indicates the geographic variables and soil moisture, which were variables used in the multiple linear regression and random forest models.



- 429 Figure 6. Inverse distance weighted (IDW) interpolations of total salt concentration for Roberts Massif (a), Bennett Platform
- (b), and Thanksgiving Valley (c). The color scale represents the 10 natural breaks in the data. Interpolations were created and
 mapped using the Geostatistical Analyst tool in ArcMap 10.3.
- 431 432



433

Figure 7. R^2 values for the multiple linear regression and random forest model predicted and measured values for the different analytes (Table 3). Test datasets include the Shackleton Glacier region (n = 31) and the Darwin Glacier region (n =

436 10) (Magalhães et al., 2012). Analytes with slopes near 1, indicating good agreement between measured and predicted 437 values, are indicated (* t < 0.5; ** t < 0.20).

Table 1. Overview of geography, soil moisture, and water-soluble ions from the Shackleton Glacier region. The minimum
 values reported are those within the detection limits. Individual sample concentrations are detailed in Table S2.

	Max	Min	Mean	STD	CV
Elevation (m)	2,220	150	1,130	551	48
Distance from coast (km)	120	1	55	38	68
Distance from glacier (m)	1,940	1	519	472	90
Soil moisture (%)	12.3	0.1	2.1	2.1	102
$F^{-}(\mu g g^{-1})$	120	0.39	8.87	11.78	133
$Cl^{-}(\mu g g^{-1})$	13,600	1.59	615	1,780	289
$NO_{3}^{-}(\mu g g^{-1})$	38,400	0.10	1,470	3,450	235
$SO_4^{2-} (\mu g g^{-1})$	55,300	0.08	4,390	8,080	184
PO_4^{3-} (µg kg ⁻¹)	4,200	76.09	381	560	147
$ClO_4^- (\mu g kg^{-1})$	75,000	0.35	985	6,020	611
$ClO_{3}^{-}(\mu g k g^{-1})$	14,500	1.00	1,170	2,500	214
$Ca^{2+} (\mu g g^{-1})$	4,400	0.55	839	1,160	139
$Mg^{2+}(\mu g g^{-1})$	6,280	0.12	293	705	240
$Na^{+}(\mu g g^{-1})$	25,300	0.39	1,140	2,880	252
$K^{+}(\mu g g^{-1})$	440	0.86	28.31	51.61	182
$Sr^{2+}(\mu g g^{-1})$	46.61	0.01	8.63	10.31	119
$H_4SiO_4 (\mu g g^{-1})$	60.78	1.14	21.78	11.03	50.67
$NH_3 (\mu g kg^{-1})$	5,080	18.85	324	587	181
N:P ratio (molar)	526,000	0.29	23,600	62,700	266
Total salt ($\mu g g^{-1}$)	80,500	9.46	7,932	13,300	167

		Iultiple gression		Random forest	
	R ²	p-value	Variance explained (%)	Most important variable	Least important variable
F-	0.27	<< 0.001	36	Elevation	Distance from coast
Cl	0.05	0.082	20	Elevation	Distance from coast
NO ₃ -	0.18	<< 0.001	-4	Distance from glacier	Distance from coast
SO_4^{2-}	0.37	<< 0.001	44	Elevation	Distance from coast
PO4 ³⁻	0.16	0.017	-7	Latitude	Distance from coast
ClO ₄ -	0.1	0.010	-3	Elevation	Distance from coast
ClO ₃ -	0.33	<< 0.001	43	Latitude	Distance from glacier
Ca^{2+}	0.26	<< 0.001	46	Soil moisture	Distance from coast
Mg^{2+}	0.29	<< 0.001	22	Elevation	Distance from coast
Na^+	0.21	<< 0.001	38	Elevation	Distance from coast
\mathbf{K}^+	0.4	<< 0.001	62	Elevation	Distance from coast
Sr^{2^+}	0.55	<< 0.001	62	Elevation	Distance from coast
NH ₃	0.29	<< 0.001	54	Elevation	Distance from glacier
N:P	0.37	<< 0.001	-3	Distance from glacier	Distance from coast
Total salts	0.37	<<0.001	45	Elevation	Distance from coast

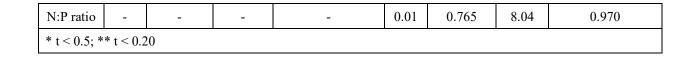
442 Table 2. Out-of-the-bag multiple linear regression and random forest model statistics generated in R.

443

Table 3. Multiple linear regression and random forest statistics between predicted and measured concentrations from the Shackleton and Darwin Glacier regions. R^2 and p-values are reported for the correlations between measured and predicted

concentrations. Regression slopes and test statistic values (t) were calculated using the smatr library (Warton et al., 2012) in
R to evaluate the null hypothesis (H₀) of slope = 1. Higher test statistic values (closer to one) indicate that we reject the null
hypothesis.

niiesis.		Multiple	e Linear Ro	egression		Ra	ndom Fo	rest
Analyte	R ²	p-value	Reg. slope	Test statistic (t) for H ₀ slope = 1	R ²	p-value	Reg. slope	Test statistic (t) for H ₀ slope = 1
				Shackleton		1		
Mg^{2+}	0.52	<< 0.001	0.52	-0.711	0.79	<< 0.001	0.58	0.780
Sr^{2+}	0.39	< 0.001	1.22	0.247*	0.67	<< 0.001	0.91	-0.166**
Total salts	0.46	<< 0.001	0.76	-0.343*	0.51	<< 0.001	0.93	-0.107**
Ca^{2+}	0.25	0.004	0.42	-0.747	0.49	<< 0.001	0.61	-0.586
SO4 ²⁻	0.43	<< 0.001	1.07	0.093**	0.45	<< 0.001	1.10	0.130**
\mathbf{K}^+	0.42	<< 0.001	1.54	0.504*	0.42	<< 0.001	1.79	0.629
F-	0.50	<< 0.001	1.22	0.267*	0.42	< 0.001	1.78	0.617
N:P ratio	0.05	0.241	0.59	-0.517	0.42	<< 0.001	0.35	-0.867
Cl-	0.07	0.144	0.28	-0.867	0.41	<< 0.001	0.70	-0.424*
ClO ₄ -	0.35	< 0.001	2.01	0.685	0.40	< 0.001	3.40	0.897
NH ₃	0.11	0.070	1.04	0.037**	0.36	< 0.001	1.09	0.106**
Na^+	0.33	< 0.001	0.91	-0.112**	0.31	0.001	1.54	0.473*
NO ₃ -	0.40	< 0.001	0.47	-0.725	0.29	0.002	0.56	-0.594
ClO ₃ -	0.13	0.043	1.20	0.197**	0.28	0.002	0.71	-0.382*
PO4 ³⁻	0.18	0.016	0.50	-0.645	0.20	0.022	0.15	-0.967
				Darwin				
Mg^{2+}	-	-	-	-	0.87	<< 0.001	0.39	-0.948
\mathbf{K}^+	-	-	-	-	0.87	<< 0.001	0.49	-0.895
Cl	-	-	-	-	0.57	0.011	0.13	-0.984
Total salts	-	-	-	-	0.44	0.001	3.25	0.940
Na^+	-	-	-	-	0.34	0.078	0.23	-0.931
NO ₃ -	-	-	-	-	0.33	0.080	0.65	-0.476*
Ca^{2+}	-	-	_	-	0.29	0.110	0.17	-0.961



	Multiple Line	ear Regression	Random Forest		
Analyte	MAE	RMSE	MAE	RMSI	
		Shackleton			
Mg^{2+}	300	461	204	347	
Sr^{2+}	3.74	4.96	1.83	2.90	
Total salts	5,640	7,070	4,400	7,030	
Ca^{2+}	797	1,100	554	912	
SO4 ²⁻	3,310	3,890	2,200	3,780	
K^+	15.86	21.16	13.48	25.61	
F-	3.14	4.19	3.13	6.31	
N:P ratio	39,700	59,300	7,310	17,21	
Cl-	936	1,540	658	1,240	
ClO ₄ -	1,180	1,560	875	2,960	
NH ₃	214	301	158	244	
Na^+	883	1,170	918	1,730	
NO ₃ -	1,200	1,910	1,130	2,040	
ClO ₃ -	1,110	1,630	343	1,050	
PO4 ³⁻	428	690	261	742	
		Darwin		I	
Mg^{2+}	6,300	6,320	302	475	
K^+	1,060	1,060	13.33	15.84	
Cl	206,000	206,000	2,140	3,330	
Total salts	215,000	215,000	5,540	7,590	
Na^+	8,330	8,530	1,500	2,600	
NO ₃ -	128,000	128,000	3,260	4,870	
Ca ²⁺	70,300	70,300	1,410	2,070	
N:P ratio	18,100,000	18,100,000	18,700	46,90	

451 Table 4. Multiple linear regression and random forest model mean absolute error (MAE) and root mean square error (RMSE)

453 References

- Antipov, E. A. and Pokryshevskaya, E. B.: Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics, Expert Syst. Appl., 39(2), 1772–1778,
- 456 doi:10.1016/j.eswa.2011.08.077, 2012.
- Ball, B. A., Adams, B. J., Barrett, J. E., Wall, D. H. and Virginia, R. A.: Soil biological responses to C, N and P fertilization
 in a polar desert of Antarctica, Soil Biol. Biochem., 122, 7–18, doi:10.1016/J.SOILBIO.2018.03.025, 2018.
- Balter, A., Bromley, G., Balco, G., Thomas, H. and Jackson, M. S.: A 14.5 million-year record of East Antarctic Ice Sheet
 fluctuations from the central Transantarctic Mountains, 2 constrained with cosmogenic, Cryosph. Discuss., in review,
 doi:10.5194/tc-2020-57, 2020.
- Barrett, J. E., Virginia, R. A., Wall, D. H., Cary, S. C., Adams, B. J., Hacker, A. L. and Aislabie, J. M.: Co-variation in soil
 biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica, Antarct. Sci., 18(4), 535–548,
 doi:10.1017/S0954102006000587, 2006.
- Barrett, J. E., Virginia, R. A., Lyons, W. B., McKnight, D. M., Priscu, J. C., Doran, P. T., Fountain, A. G., Wall, D. H. and
 Moorhead, D. L.: Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems, J. Geophys. Res., 112(G1), G01010,
 doi:10.1029/2005JG000141, 2007.
- Beet, C. R., Hogg, I. D., Collins, G. E., Cowan, D. A., Wall, D. H., Adams, B. J., Beet, C., Hogg, I., Collins, G., Cowan, D.
 and Adams, B.: Genetic diversity among populations of Antarctic springtails (Collembola) within the Mackay Glacier
 ecotone 1, Genome, 59, 762–770, doi:10.1139/gen-2015-0194, 2016.
- Bennett, K. R., Hogg, I. D., Adams, B. J. and Hebert, P. D. N.: High levels of intraspecific genetic divergences revealed for
 Antarctic springtails: evidence for small-scale isolation during Pleistocene glaciation, Biol. J. Linn. Soc., 119(1), 166–178,
 doi:10.1111/bij.12796, 2016.
- Bockheim, J. G.: Landform and Soil Development in the McMurdo Dry Valleys, Antarctica: A Regional Synthesis, Arctic,
 Antarct. Alp. Res., 34(3), 308–317, doi:10.1080/15230430.2002.12003499, 2002.
- Bockheim, J. G.: Functional diversity of soils along environmental gradients in the Ross Sea region, Antarctica, Geoderma, 144(1–2), 32–42, doi:10.1016/j.geoderma.2007.10.014, 2008.
- Bottos, E. M., Laughlin, D. C., Herbold, C. W., Lee, C. K., McDonald, I. R. and Cary, S. C.: Abiotic factors influence
 patterns of bacterial diversity and community composition in the Dry Valleys of Antarctica, FEMS Microbiol. Ecol., 96(5),
 42, doi:10.1093/femsec/fiaa042, 2020.
- 481 Breiman, L.: Random forests, Mach. Learn., 45(1), 5–32, doi:10.1023/A:1010933404324, 2001.
- 482 Caruso, T., Hogg, I. D., Nielsen, U. N., Bottos, E. M., Lee, C. K., Hopkins, D. W., Cary, S. C., Barrett, J. E., Green, T. G.
- 483 A., Storey, B. C., Wall, D. H. and Adams, B. J.: Nematodes in a polar desert reveal the relative role of biotic interactions in 484 the coexistence of soil animals, Commun. Biol., 2(63), doi:10.1038/s42003-018-0260-y, 2019.
- Claridge, G. G. C. and Campbell, I. B.: Soils of the Shackleton glacier region, Queen Maud Range, Antarctica, New Zeal. J.
 Sci., 11(2), 171–218, 1968.
- 487 Collins, G. E., Hogg, I. D., Convey, P., Barnes, A. D. and McDonald, I. R.: Spatial and temporal scales matter when
- 488 assessing the species and genetic diversity of springtails (Collembola) in Antarctica, Front. Ecol. Evol., 7, 76,
 489 doi:10.3389/fevo.2019.00076, 2019.
- 490 Courtright, E. M., Wall, D. H. and Virginia, R. A.: Determining habitat suitability for soil invertebrates in an extreme 491 environment: The McMurdo Dry Valleys, Antarctica, Antarct. Sci., 13(1), 9–17, doi:10.1017/S0954102001000037, 2001.
- 492 Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H. and Ceballos, G.: Multiple ecological pathways to extinction in

- 493 mammals., 2009.
- 494 Diaz, M. A., Adams, B. J., Welch, K. A., Welch, S. A., Opiyo, S. O., Khan, A. L., McKnight, D. M., Cary, S. C. and Lyons,
 495 W. B.: Aeolian Material Transport and Its Role in Landscape Connectivity in the McMurdo Dry Valleys, Antarctica, J.
 496 Geophys. Res. Earth Surf., 123(12), 3323–3337, doi:10.1029/2017JF004589, 2018.
- 497 Diaz, M. A., Corbett, L. B., Bierman, P. R., Adams, B. J., Wall, D. H., Hogg, I. D., Fierer, N. and Lyons, W. B.: Relative
 498 terrestrial exposure ages inferred from meteoric 10Be and NO3- concentrations in soils along the Shackleton Glacier,
 499 Antarctica, Earth Surf. Dyn., in review, doi:https://doi.org/10.5194/esurf-2020-50, 2020a.
- Diaz, M. A., Li, J., Michalski, G., Darrah, T. H., Adams, B. J., Wall, D. H., Hogg, I. D., Fierer, N., Welch, S. A., Gardner, C.
 B. and Lyons, W. B.: Stable isotopes of nitrate, sulfate, and carbonate in soils from the Transantarctic Mountains, Antarctica:
 A record of atmospheric deposition and chemical weathering, Front. Earth Sci., 8(341), doi:10.3389/feart.2020.00341,
 2020b.
- 504 Dragone, N. B., Diaz, M. A., Hogg, I., Lyons, W. B., Jackson, W. A., Wall, D. H., Adams, B. J. and Fierer, N.: Exploring the 505 boundaries of microbial habitability in soil, bioRxiv, doi:https://doi.org/10.1101/2020.08.03.234583, 2020.
- Freckman, D. W. and Virginia, R. A.: Soil Biodiversity and Community Structure in the Mcmurdo Dry Valleys, Antarctica,
 in Ecosystem dynamics in a polar desert; the McMurdo dry valleys, Antarctica, edited by J. C. Priscu, pp. 323–335,
 American Geophysical Union (AGU)., 1998.
- 509 Golledge, N. R. and Levy, R. H.: Geometry and dynamics of an East Antarctic Ice Sheet outlet glacier, under past and 510 present climates, J. Geophys. Res., 116(F3), F03025, doi:10.1029/2011JF002028, 2011.
- 511 Golledge, N. R., Fogwill, C. J., Mackintosh, A. N. and Buckley, K. M.: Dynamics of the last glacial maximum Antarctic ice-512 sheet and its response to ocean forcing, Proc. Natl. Acad. Sci. U. S. A., 109(40), 16052–16056, doi:10.1073/pnas.1, 2012.
- Golledge, N. R., Levy, R. H., McKay, R. M., Fogwill, C. J., White, D. A., Graham, A. G. C., Smith, J. A., Hillenbrand, C.
 D., Licht, K. J., Denton, G. H., Ackert, R. P., Maas, S. M. and Hall, B. L.: Glaciology and geological signature of the Last
 Glacial Maximum Antarctic ice sheet, Quat. Sci. Rev., 78, 225–247, doi:10.1016/j.quascirev.2013.08.011, 2013.
- Heindel, R. C., Spickard, A. M. and Virginia, R. A.: Landscape-scale soil phosphorus variability in the McMurdo Dry
 Valleys, Antarct. Sci., 29(3), 252–263, doi:10.1017/S0954102016000742, 2017.
- Heung, B., Bulmer, C. E. and Schmidt, M. G.: Predictive soil parent material mapping at a regional-scale: A Random Forest
 approach, Geoderma, 214–215, 141–154, doi:10.1016/j.geoderma.2013.09.016, 2014.
- Hogg, I. D. and Wall, D. H.: Polar deserts, in Life at Extremes: Environments, Organisms and Strategies for Survival, edited
 by E. M. Bell, pp. 176–195, CAB International., 2012.
- Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J. and Morin, P.: The Reference Elevation Model of Antarctica, Cryosph.,
 13, 665–674, doi:10.5194/tc-13-665-2019, 2019.
- Jackson, A., Davila, A. F., Böhlke, J. K., Sturchio, N. C., Sevanthi, R., Estrada, N., Brundrett, M., Lacelle, D., McKay, C. P.,
 Poghosyan, A., Pollard, W. and Zacny, K.: Deposition, accumulation, and alteration of Cl-, NO3-, ClO4- and ClO3- salts in
 a hyper-arid polar environment: Mass balance and isotopic constraints, Geochim. Cosmochim. Acta, 182, 197–215,
 doi:10.1016/j.gca.2016.03.012, 2016.
- Jackson, M. S., Hall, B. L. and Denton, G. H.: Asynchronous behavior of the Antarctic Ice Sheet and local glaciers during
 and since Termination 1, Salmon Valley, Antarctica, Earth Planet. Sci. Lett., 482, 396–406, doi:10.1016/j.epsl.2017.11.038,
 2018.
- 531 Jackson, W. A., Davila, A. F., Estrada, N., Lyons, W. B., Coates, J. D. and Priscu, J. C.: Perchlorate and chlorate
- 532 biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica, Geochim. Cosmochim. Acta, 98, 19–30,

- 533 doi:10.1016/j.gca.2012.09.014, 2012.
- Jackson, W. A., Böhlke, J. K., Andraski, B. J., Fahlquist, L., Bexfield, L., Eckardt, F. D., Gates, J. B., Davila, A. F., McKay,
- C. P., Rao, B., Sevanthi, R., Rajagopalan, S., Estrada, N., Sturchio, N., Hatzinger, P. B., Anderson, T. A., Orris, G.,
 Betancourt, J., Stonestrom, D., Latorre, C., Li, Y. and Harvey, G. J.: Global patterns and environmental controls of
 perchlorate and nitrate co-occurrence in arid and semi-arid environments, Geochim. Cosmochim. Acta, 164, 502–522,
- 538 doi:10.1016/J.GCA.2015.05.016, 2015.
- Kassambara, A. and Mundt, F.: Package "factoextra," Extr. Vis. results Multivar. data Anal., 76 [online] Available from:
 https://github.com/kassambara/factoextra/issues (Accessed 11 August 2020), 2017.
- Kirkwood, C., Cave, M., Beamish, D., Grebby, S. and Ferreira, A.: A machine learning approach to geochemical mapping, J.
 Geochemical Explor., 167, 49–61, doi:10.1016/j.gexplo.2016.05.003, 2016.
- LaPrade, K. E.: Climate, geomorphology, and glaciology of the Shackleton Glacier area, Queen Maud Mountains,
 Transantarctic Mountains, Antarct. Res. Ser., 36(9), 163–196, doi:10.1029/ar036p0163, 1984.
- Levy, J. S., Fountain, A. G., Welch, K. A. and Lyons, W. B.: Hypersaline "wet patches" in Taylor Valley, Antarctica,
 Geophys. Res. Lett., 39(5), n/a-n/a, doi:10.1029/2012GL050898, 2012.
- Lyons, W. B., Welch, K. A., Neumann, K., Toxey, J. K., McArthur, R., Williams, C., McKnight, D. M. and Moorhead, D.
 L.: Geochemical linkages among glaciers, streams and lakes within the Taylor Valley, Antarctica, Ecosyst. Dyn. a polar
- 549 desert; McMurdo dry Val. Antarct., 72, 77–92, doi:10.1029/AR072p0077, 1998.
- Lyons, W. B., Deuerling, K., Welch, K. A., Welch, S. A., Michalski, G., Walters, W. W., Nielsen, U., Wall, D. H., Hogg, I.
 and Adams, B. J.: The Soil Geochemistry in the Beardmore Glacier Region, Antarctica: Implications for Terrestrial
 Ecosystem History, Sci. Rep., 6, 26189, doi:10.1038/srep26189, 2016.
- Magalhães, C., Stevens, M. I., Cary, S. C., Ball, B. A., Storey, B. C., Wall, D. H., Türk, R. and Ruprecht, U.: At Limits of
 Life: Multidisciplinary Insights Reveal Environmental Constraints on Biotic Diversity in Continental Antarctica, edited by F.
 de Bello, PLoS One, 7(9), e44578, doi:10.1371/journal.pone.0044578, 2012.
- 556 Nakada, M. and Lambeck, K.: The melting history of the late Pleistocene Antarctic ice sheet., 1988.
- Nkem, J. N., Virginia, A. R. A., Barrett, A. J. E., Wall, D. H. and Li, A. G.: Salt tolerance and survival thresholds for two
 species of Antarctic soil nematodes, Polar Biol., 29, 643–651, doi:10.1007/s00300-005-0101-6, 2006.
- Patel, J., Shah, S., Thakkar, P. and Kotecha, K.: Predicting stock market index using fusion of machine learning techniques,
 Expert Syst. Appl., 42(4), 2162–2172, doi:10.1016/j.eswa.2014.10.031, 2015.
- Peters, J., De Baets, B., Verhoest, N. E. C., Samson, R., Degroeve, S., Becker, P. De and Huybrechts, W.: Random forests as
 a tool for ecohydrological distribution modelling, Ecol. Modell., 207(2–4), 304–318, doi:10.1016/j.ecolmodel.2007.05.011,
 2007.
- Prasad, A. M., Iverson, L. R. and Liaw, A.: Newer classification and regression tree techniques: Bagging and random forests
 for ecological prediction, Ecosystems, 9(2), 181–199, doi:10.1007/s10021-005-0054-1, 2006.
- 566 R Core Team: R: A language and environment for statistical computing, 2020.
- 567 Stafoggia, M., Bellander, T., Bucci, S., Davoli, M., de Hoogh, K., de' Donato, F., Gariazzo, C., Lyapustin, A., Michelozzi,
- 568 P., Renzi, M., Scortichini, M., Shtein, A., Viegi, G., Kloog, I. and Schwartz, J.: Estimation of daily PM10 and PM2.5
- 569 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model, Environ. Int., 124, 170–179,
 570 doi:10.1016/j.envint.2019.01.016, 2019.
- 571 Stevens, M. I. and Hogg, I. D.: Long-term isolation and recent range expansion from glacial refugia revealed for the endemic

- springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica, Mol. Ecol., 12(9), 2357–2369, doi:10.1046/j.1365294X.2003.01907.x, 2003.
- 574 Stevens, M. I., Greenslade, P., Hogg, I. D. and Sunnucks, P.: Southern Hemisphere Springtails: Could Any Have Survived 575 Glaciation of Antarctica?, Mol. Biol. Evol., 23(5), 874–882, doi:10.1093/molbev/msj073, 2006.
- Talarico, F. M., McKay, R. M., Powell, R. D., Sandroni, S. and Naish, T.: Late Cenozoic oscillations of Antarctic ice sheets
 revealed by provenance of basement clasts and grain detrital modes in ANDRILL core AND-1B, Glob. Planet. Change, 96–
 97, 23–40, doi:10.1016/j.gloplacha.2009.12.002, 2012.
- Tesoriero, A. J., Gronberg, J. A., Juckem, P. F., Miller, M. P. and Austin, B. P.: Predicting redox-sensitive contaminant
 concentrations in groundwater using random forest classification, Water Resour. Res., 53(8), 7316–7331,
 doi:10.1002/2016WR020197, 2017.
- Toner, J. D., Sletten, R. S. and Prentice, M. L.: Soluble salt accumulations in Taylor Valley, Antarctica: Implications for
 paleolakes and Ross Sea Ice Sheet dynamics, J. Geophys. Res. Earth Surf., 118(1), 198–215, doi:10.1029/2012JF002467,
 2013.
- Wall, D. H., Bardgett, R. D., Behan-Pelletier, V., Herrick, J. E., Jones, H., Ritz, K., Six, J., Strong, D. R. and van der Putten,
 W. H., Eds.: Soil Ecology and Ecosystem Services, Oxford University Press, Oxford., 2012.
- Warton, D. I., Duursma, R. A., Falster, D. S. and Taskinen, S.: smatr 3- an R package for estimation and inference about
 allometric lines, Methods Ecol. Evol., 3(2), 257–259, doi:10.1111/j.2041-210X.2011.00153.x, 2012.
- Webster-Brown, J., Gall, M., Gibson, J., Wood, S. and Hawes, I.: The biogeochemistry of meltwater habitats in the Darwin
 Glacier region (80°S), Victoria Land, Antarctica, Antarct. Sci., 22(6), 646–661, doi:10.1017/S0954102010000787, 2010.
- Wilson, D. J., Bertram, R. A., Needham, E. F., van de Flierdt, T., Welsh, K. J., McKay, R. M., Mazumder, A., Riesselman,
 C. R., Jimenez-Espejo, F. J. and Escutia, C.: Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials,
 Nature, 561(7723), 383–386, doi:10.1038/s41586-018-0501-8, 2018.
- Zeglin, L. H., Sinsabaugh, R. L., Barrett, J. E., Gooseff, M. N. and Takacs-Vesbach, C. D.: Landscape Distribution of
 Microbial Activity in the McMurdo Dry Valleys: Linked Biotic Processes, Hydrology, and Geochemistry in a Cold Desert
 Ecosystem, Ecosystems, 12(4), 562–573, doi:10.1007/s10021-009-9242-8, 2009.
- 597